Hardware Resources: A Generalizing View
on Computer Architectures

Wolfgang Matthes, 1990

A manuscript in a tentative stage.
The finished paper has been published in
Computer Architecture News, March 1990.

Abstract

Computer hardware is seen as a collection of resources. Ferformance,
functional capabilities, and quantity of these resources are decisive
to overall system performance.

Btarting from this paradigm, computer architecture design may be
handled systematically in the future even by formalized methods.

Computer architecture is mainly concerned with the interface between
hardware and software. Most of the computer architecture work covers
the instruction set, the principles of operation {e. g. instruction
sequencing, addressing, interrupt handling etez.), and some related
aspects of hardware structure, as the quantity of processing units,
the software-accessible registers, the memnory structure, and the data
paths. Instruction set design and the corresponding principles of
machine organization have found a great interest and have led to many
controversial discussions, with the RISC-CISC debate being the most
piraminent example.

This paper demonstrates how a closer look on details of the hardware
structure may lead toc a more generalizing point of view which pro-
mises many problems discussed controversially to be handled in the
context of a systematic appreoach by future work.

"Hardware resources"” is =a popular term in computer literature.’ Rea—
soning about this term a little more in detail will vield a general
paradigm which allows to handle important problems of computer archi-
tecture design in a considerably more systematic way.

Fig. 1 shows how each computer can be regarded as a collection of
hardware resources, such as memory, processing means, data paths etc.
These resocuwces are program—-controlled, i. e. the execution of a
stored program determines how the resources are used in each of the

1 It had been used by Flynn in his paper [21, for example.

| Control Resources
memory

* Memory

‘ - Processing means

*Data paths
Control means

Eondit/‘ons I

control effecfts

Fig.1. Computer structure as a collection
of resources,

—> Memory

Flipflops

1 \))) |

Selection

\

Fig. 2. /In-detail view: the resources
vector,

[4
machine cycles. Thus the resouwrces are to be completed by storage
means for the program information {control storage) and by control
means which select the appropriate control information for each
machine cycle and which control the operation of the remaining re-
scurces. This paradigm covers two well-known principles:

1. The v. HMNeumarnn architecture. The contrel storage is accessed
sequentially. The sequence is determined by the control means accor-
ding to a hbard-wired slgorithm {instruction address counting or
brranching, respectively). In a genuine v. RMNeumamm machine, control
storage and data storage are identical.

2. The dataflow architecture. The contirol storage is an associative
storage which delivers the cwrrent resowce control information ac-
coarding to resouwrces available {i. e. "not busy”) and the data which
are ready to be processed.

The basic limitations of both approaches can be shown easily:

1. The v. Neumann machine is performance-limited, because the selec-
tion of control information is determined by the hard-wired instruc-
tion sequencing. Hence inherent parallelism dwing runtime cannot be
used.

2. The genuine dataflow machine requires a control memory with com-—
pletely associative access which cannoct be built. Thus the dataflow
principle is cost-limited; it can be implemented only with compro-
mises betwesen associative and sequential control storage access o
betwesn performance and cost, respectivelv.

1. Functional capabilities and sheer performance of the processing
resowces are decisive to the overall performance of the computer.
Example: A computer with & hardware multiplication unit will perform
multiplication faster than a machine which does multiplication by
means of shift-add sequences.

I¥f multiple processing resowces are provided, performance will in-
crease proportionally, provided that all these resowces can be kept
busy with useful work. The peak performance of an arbitrary computer
structure can be calculated according to a simple formula:

Guantity_of_Appropriate_FResowrces
FPeall Ferformance = e o e e e e et e
Duration_of_a_Machine_cvcle

This is completely independent of a particular architectwal princip-
le.

2. If the enszemble of processing resources has been selected, perfor-—
mance will be influenced by the connection structure together with
the memary structure. Theszse structures are decisive to feed the
processing resowces with data to be processed and to drain the
results. Such activities showld be done completely in parallel to
processing or at least with a minimum of additional machine cycles.

.y

e In addition to these structures, instruction formats, addressing
principles etc. must be designed with the main objective to keep most
of the resources busy with useful workload during most of the time.
Workload assignment can be done during compile time or during run-
time. Assignment during runtime reguires special circultry to recog-
nize segments of the dataflow out of the instruction stream. if
the assignment can be done during compile time, such circuitry is not
necessary. This makes higher performance possible {(special circuitiy
will slow down the machine cycle or will ococupy silicom area which
would otherwise be available for additional processing resouwces!.
Furthermore a compiler can overlook the whole program, thus we oan
‘hope to detect more of the inherent parallelism than by watching the
instruction stream during runtime f{experience has shown that during
runtime only the parallelism within short sequences of 5...10
instructions between branches can be used). However , obijections
against this approach (e. qg. in [83) should be taken into consi-
deration, too. Hence appropriate compromises should be found {perhaps
including hardware support for compile time dataflow analysis).

4. Resource Control

T reason about resource control and informastion flow organization
requires to investigate hardware structwes more in detail. Froces-
zing resowces are made of flipflops or hardware registers and combi-
natorial circuitry. All flipflops or registers of the processing part
of a computer can be regarded together as the resouwrce vector. Farts
of the resouwrce vector nesd information from storage means, parts
deliver selection information {i. e. addresses) to storage means,
parts deliver data to storage means, and parts of the resouwrce vector
are fed back one upon another. This scheme is =shown in fig. Z2Z. It
applies to all paradigms of digital {binary) information processing.
Starting form this point of view, design slternatives can be investi-
gated systematically {fig. 3):

a) Immediate assignment. A11 necessary information is fed immediately
to the corresponding positions of the rescuwrce wvector. This corre-
sponds roughly to VLIW architectuwres or to the microprogram level of
machines with "horizontal” microinstruction formats.

Iy Group selection. In gach cyocle only & selected part of the resour-—
ce vector is leoaded. This part is coded explicitely within the infor-
mation. This corresponds roughly to most of the RISC machines or to
machines with "vertical” microinstruction formats.

c) Coded selection. The information is decoded by means of dedicated
circuitry and affects parts of the resouwrce vector selectively. This
is the paradigm for most of the conventional architectures.

More in detail,y; the information fed to the resource vector must
provide for: '

1. the selection of the operations to be performed

2. the arguments of these operations

3. the destination control of the results produced

4, the selection of the successor control information
%. a coded description of the own format, if necessarvy.

|

!

a) I/mmediate %assignmenf | ‘

Resources ottt

vector 1 1 I l 1

b) Group selection

|

Group - :

_ .
i%/;gf -——7/Distribuz‘ion \

C) Coded selection

[—
Memory

[Iranscoding circuitry \

/

L [[T T T 17

Fig. 3. Alternatives: feeding the resources
vector from memory.

Operation codes are ordinal numbers inte the set of all operations
which are provided in the hardware. Conventional machine instructions
have only one cperation code. VLIW instructions contain multiple
cperation codes. In microinstructions the operation control informa-
tion is coded within various control fields or even single bits.,
Arguments can be delivered as immediate values, 1. e. the proper
values accompany the operation codes and the other control informa-
tion. {An extreme sclution iz to provide all arguments of an oper a-
tion as immediate values accompanying the contrel information. This
is just another view of the well-known datzaflowm concept.) However , in
mast cases the values are not available immediately, but must be
fetohed according to selection information {(i. e. memory addresses).
In conventional architectures an address specification compirises an
ordinal number into the set of addressing principles {absolute, basze
+ displacement, indexed stc.) and some immediate values {address of
the base register, offset etc.). For destination control, similar
addressing principles are provided. In addition, it is not necessary
to store each result in memo Y Instead it could be kept within the
resowce vector, . g. in an accumulator or top-of-stack register.

Control information sequencing is usually implemented by hard-wired
counting. If the sequence is to be modified, appropriate selsction
information (branch addresses) must be delivered together with an
ordinal number into the set of branch conditions.

If there is no 1:l-correspondence between the control information and
the bit positions of the resource vector, the control information
s describe its cwn format. These descriptive codes control the
selection o tiranscoding circuitry shown in fig. 3 b} or), respec-
tively.

The control information is used according to the tollowing scheme:

Step 1: The control information is loaded into the resource vector.
Step 2: The arguments are fetched.

Step 3: The results are calcul ated.

Step 4: The results are assigned {(i. e. moved to the mEmory) .

Btep S The successor control information is selected.

Mot all the steps 1| - 5 can be erecuted simultaneocusly. The time

interval to calculate the results i{step %) is determined by the
dezign of the corresponding resouwrces. 6iven this, only the following
steps may be accelerated, executed in parallel, or omitted:

® Argument fetch (step 2). In many cases it can be overlapped with
the preceding result calculation {"look ahead"); it can be accele-
rated by providing extremely fast argument memories {(data caches); or
it can be avoided by feeding arguments immediately accompanying the
control information {(dataflow principle).

® Result assignment {step 4). Cache memories can accelerate result
assignment if designed properly ("non-store-thru"- principle). Result
assignment should be avoided or postponed whenever possible. Compi-—
lers should try to keep results within the resource vector, and
hardware architecture should be designed with this objective in mind.

e Selection of and accese to successor control information (step 5
and step 1 of next cycle)., This should be overlapped with result
calocuwlation (Minstruction look ahead"). BEranches can be overlapped by
means of principles borrowed from RISC architectures or from micro-
programming (€. g. "late" multiway branching). EBesides overlapping,
acceleration is possible, too {instruction caches; dense coding of
instructions which allows teo fetch multiple instructions (1. €. more
meaningful control information) in each instruction access).

B _Outlook

Each rescwrce 1= characterized by the corresponding information
structuwres and by the operations it can perform. Hence it can be
represented by means of algebraic structures. By adequate formaliza-
ticrn, a resowce algebra or a set of algebraic structures for diffe-
rent purposes {e. g. perforpance evaluation’) could be built. In the
futwre this approach could replace many of the "qut feel"? decisions
in cwrent architecture design by at least approximative calcula-
tions. A computer architectwe could be developed according to the
following =scenario:

1. The objective of the architecture design i= to provide a powerful,
cost-effective, feasible, and versatile collection of resowces.

~

2. The designer has to tackle the following problems:

al Belect the resources with respect to functional capabilities,
performance, and cost. I+ cost and performance of each candidate
resource {e. Q. adders, miltiplieres, address generators, register
files etc.) are known, also the statistical profile of application
requiremnents, it may be & problem of linear programming to choose an
appraopriate mix of rescurces within given cost constraints.3

b} Frovide sufficient connection and memory structures in arder that
all resources can be kept busy with useful work during most of the
time.

) Frovide an efficient encoding of the control information (1. &. an
appropriate instruction set).

) Provide compilers which can make optimum use of all resources.

A sufficiently enriched resource algebra could be used as an interme-
diate language. Compilers could trancslate all application programs
into this language which describes the resources needed, their inter-
action, and the inherent parallelism. In a second pass, & machine
program for the real computer could be compiled from the intermediate
language {(i. e. a mapping from the abstract to a concrete collection
of resources).

1 041 may serve as an example.

2 The term was used by Linecoln in one of his remarks on
supercomputer architectuwre design ([31).

S3Co0l well mentioned such an approach in his thesis [1), but

regarded it to be infeasible due to lacking foundations.

Such work is vet to be done. However, & brief outlook can be given
how architectwes designed according to this paradigm could appear:

® They =hall npot only being hased on the best of CISC and RISC
principles (e. g. as the Intel 80850 and 80484 or the HMotorola
HA4040) , but alsoc on the best of VLIW, microprogramming, and dataflow
principles.

o They shall contain more resowces than conventional architectures,
at least multiple processing rescwreces =0 that inherent parallelism
could be used.

e The rezsowces shall be more appropriate to application reguire-—
ments, and they shall be optimized internally.

&. Heferences

£11 Colwell, R.F. The Performance Effects of Functional HMigration
and Architectuwal Complexity in Object-riented Svstems=. De-
partment of Computer Science Carnegie-Mellon WUniversity, CHU-
CH-853-159, Fittsbwrgh, Fa., 1985,

£23 Flynn., M. J. Some Computer (rganizations and Their Effective-
ness. IEEE TC~21: 2482460, September, 1972,
L3 Lincoldn, M. R. It's really not as much fun building a supercom—

puter as it is simply inventing one. fn: Kuck, Lawig, Samek
ieds.) High Speed Computer and Algorithm Organization, 3-11,
ApRcademic Press, 1971,

43 Miller-Wichards, D. &n fAlgebraic Approasch to FPerformance Analy-—
sis., In: Lecture MNotes in Computer Sciences 293, 157-13%,
Springer, 1988.

£33 Wilson, K. B0840 CPU positions Intel to take on minisupercompu-—
ters. Computer Design Yel. 28 Mo, 7, 20-23, April 1, 1989,

L&l Wilson, H. Intel 803485 carries complex instruction set to RISE
speeds. Computer Design VYol. 28 MNe. %, 18-20, May 1, 1989,

£71 Wilson, R. 68040 moves toward RISC camp with redesigned pipe-
lines, caches. Computer Dssign Yol. 28 No. 9, 22, May 1, 1982.

£al Wirth, N. Hardware frchitectuwres for Programming Languages and

Programming Languages for Hardware Architectures. Operating
Sysztems Review Yol. 21 No. 4, 2-8, October, 1987.

