
How many operation units are adequate?
Wolfgang Matthes, 1991

A manuscript in a tentative stage.
The finished paper has been published in
Computer Architecture News, June 1991 .

Abstract

A uniprocessor superscalar architecture is proposed which comprises
four universal operation units arranged according to a tree-shaped
dataflow graph, instruction issuing hardware, and operand selection
means. The control principles are based on VLIW, microprogramming,
and dataflow concepts. The proposal emerged mainly from investiga
tions of inherent mathematical structures of application problems,
especially from the analysis of dataflow graphs of elementary mathe
matical formulas (arithmetic of intervals, complex and rational num
bers etc .) . The particular operation unit itself is an ensemble of
high-performance processing resources which may be compared to state
of-the-art processors <e . g . i860) . It may require a silicon budget
from one to five million transistors. The whole processor may require
10 to 50 million transistors, thus being a suitable implementation
target for IC technologies of the 90's.

1. Introduction

To make use of the inherent par~llelism in ordinary programs requires
the availability of more than one processing resource to perform the
desired operations. An obvious approach is to provide multiple opera
tion units . This is known as the superscalar approach . Besides,
multiple resources could be created by dividing an operation resource
vertically into pipelined segments so that multiple operations can
flow through in a step-by-step fas hion <superpipelining approach>.
Both principles can be combined <supersca lar/superpipelined machines;
J088) .
In this paper a particular superscalar architecture will be proposed
<with obvious possibilities to add superpipelining, too) .
The main objective of the underlying research activities was to
develop a performance-optimized uniprocessor architecture which
should be

1> a versatile, powerful , and cost-effective ensemble of processing
resources,

2) an advantageous implementation target for IC technologies of the
90 ' s,

3) a suitable processing element for high-performance and massively
parallel systems, according to the good old principle of engi
neering sciences, to optimize the components first before imple
menting them in cost-i ntensive technologies or assembling them to
gether in large quantities.

2. Known Structures - an Overview

Superscalar machines can be built as ensembles of different operation
units (integer add, integer multiply, floating point add, multiply
etc.; the CDC 6600 CTH064J is a well-known example>.
Evidently, an ensemble cf universal operation units, each of which is
capable of performing all the operations specified in the architec
ture, will provide more opportunity to exploit the available inherent
parallelism. Hence we will concentrate on such structures.
In a rough taxonomy, known structures could be divided into two
categories:

1) tree-like dataflow connection structures,

2) crossbar-like connection structures.

The Figures 1,2 show two structures of the first category. The first
structure CWU83J was derived from the observation, that many opera
tion sequences have the form

(a OP1 bl OP2 c,

with the SAXPY (linked triad) d(i)= (a * b(i)) + c(i) being a well-
known example.
The second structure <proposed for a GaAs microprocessor; VLA88) had
been based on the following empirical realization: Application pro
grams can be divided into those with a low amount of calculations and
those with an extraordinarily high amount. Programs belonging to the
first category have in approximately 93% of all assignments no arith
metic operands or only one arithmetic operand. Calculation-intensive
programs have in approximately 93% cf all assignments up to 3 ope
rands (see Figure 3).
Figure 4 shows the principial structure cf a superscalar machine with
crossbar-like connections. The obvious advantage is the unlimited
universality which is not restricted by a particular scheme of data
flow. On the contrary, crossbar networks are cost-intensive and may
lead to a slower machine cycle. This scheme is typical cf VLIW archi
tectures [COL87, COBBJ, sometimes with the modification of separate
register files, crossbars, and operation units for both integer/logi
cal and floating point operations.

An important hardware viewpoint deserves consideration: the informa
tion paths in dataflow schemes are point-to-point connections which
can be kept shcrt. Tree-shaped structures have the additional advan
tage that the connections de not cross each other. Hence they are
better suited for integration than totally universal connection
schemes (crossbar or bus structures).

3. Foundations for Developing a New Architecture

The present superscalar architectures had been developed on the basis
of comprehensive analytical werk. The experiences had been gathered
essentially by measurements cf the frequency of usage cf operations
and operation sequences in comprehensive samples of application pro
grams.

Such a measurement-oriented approach [MA86J may lead to considerably
good machines, but it has two obvious drawbacks:

1> The rate of usable inherent parallelism is disappointingly low. In
the literature, the recommended rate depends on the semantic level at
which the investigations had been done. A lower level means less
usable parallelism. If only the instruction level is considered, it
has shown streng evidence, that it makes no sense to provide more
than two operation units in parallel [J089, SM89J. On the contrary,
investigations at Fortran source code level had promised rates of
usable parallelism from 16 to more than 128 [KU74J.

2) Machine architectures derived from these data reflect current
programming habits. Possible opportunities for further innovation may
remain undiscovered.

Hence our approach is not to study programs, but to stuciy the under
lying mathematical structures or, in more general terms, the deep
structures, the essence of important application problems Ci. e.
semantic levels above the programming languages).

Example:
In many numerical applications it is possible to execute both integer
and floating point operations in parallel. This fact had been applied
to some architectures Ce. g. Trace, Transputer T 800, i860). But what
is the essential cause behind this empirical observation? For what
reason can integer units be kept busy in loops processing floating
point data? - Evidently, the integer operations are necessary to do
the address calculations for array element addressing. From this
realization we can draw a significant advantage: We can sub-optimize
the integer units. For example, we may restrict the number of univer
sal integer units to one or two, and additionally we may provide some
units specialized to address calculations Cas many as needed to feed
the floating point units). Thus we may exploit more of the inherent
parallelism and keep cost comparatively lower.

To obtain initial empirical data for a new proposal we have simply
browsed some collections of formulas. 1 Figures 5-8 show some fre
quently needed mathematical operations together with the correspon
ding dataflow graphs. We realize only two essential interconnection
structures:

1) none, i. e. independently operating units,

2) tree-shaped structures.

A more elaborate bookkeeping of the resources needed Cskipped here
for sake of brevity> will show that fcur operation units may be used
efficiently Ci. e. they may be kept busy in nearly the whole time).
Calculations whose dataflow graph comprises more than four nodes are
to be executed in more than one processing step. Hence some bypass
and local storage means have to be provided.

1 Of course, this simple method cannot substitute comprehensive
investigations. But it is sufficient to demonstrate the feasibility
of our approach.

4 . The Proposed Structure

Accord1ng to Figures 9,10 the proposed structure comprises four
universal Operation units and Cnot explicitely shown) a minimum/ma
ximum and a delta detector. The operation units form a tree structure
with four operand data paths from memory and one result path to
memory. The structure is an extension of t h e structure according to
Figure 2 by an additional unit whose 2nd operand input is attached to
a stack-like accumulating memory or accumulator register, respective
ly. A stack-organized accumulat1ng memory of suff icient capacity may
be used as the runtime data stack <at least as a stack cache; DI87),
Hence the problem how ordinary programs can exploit the tree struc
ture efficiently may be reduced to the problem of tree height reduc
tion.
The memory subsystem, the instruction issuing and control mechanisms,
and address calcul~tion means are implemented in additional hardware
which will be explained below.
The structure according to Figures 9,10 is based on t h e assumption
that a tree-like dataflow scheme will be more significant in a true
universal processor than independent operation cf the four units.
Hence only the tree connection s are prov ided in hardwar e to keep
interconnection cost as low as possible. This approach requires some
bypass provisions to feed the operation units 3,4 with control infor
mation, and, if operated independently, with memory data.
On the other hand, this cost/performance tradeoff will cause effecti
vity lasses, if vectorized or unrolled code is to be executed. As a
matter of routine, to allow for independen t oper ation of four units
would require at least 12 memory ports (4*2=8 to fetch the operands,
4 to store the results), and additional interconnection means would
be n ecessary to implemen t the tree-sh aped str ucture. The urge for
cost reduction led to the extension of the proposed str uct ur e shown
in Figure 11. Each of the operation units has a multipurpose memcry
<MPM> which can be used as an accumulatori a stack~ a ccllection of
vector registers, and a control storage. lt h as two independent ports
for read and write accesses, respectively. Its capacity should be at
least 8 kBytes, organized as 1024 buckets of 128 bits (if used as ~

vector register~ it could hold two vectors of 1024 64-bit elements).
The whole structure is connected to the memory subsystem via eight
ports Cfour read-only and four read/write ports, the latter are used
to provide the paths of the tree-shaped structure as well). This
scheme allows to load and store the MPMs at maximum speed. Each of
the operation units can execute even triadic operations Ce. g. SAXPY>
with two of the operands delivered via memory ports a n d one from the
MPM. The results will be stored in the MPMs. They can be moved to the
memory at maximum speed after the operations have been ccmpleted.

5 . The Internal Structure of an Operation Unit

Each of the faur operation units can process numerical and n onnumeri
cal data, respectively.
The internal structure of a processing kernel is shown in Figure 12.
In principle, some state-of-the-art high-performance processors may
serve as a paradigm for processing kernel design (e. g. TMS 34082,
Motorola DSP960002, i860, AMD 29000), and Figure 12 shows nothing but
an ensemble of processing resources a high-performance machine should

have, accord1ng to tcday's knowledge. Compatibility to existing ar
chitectures was not our concern. Instead, we tried to put as many
innovative ideas as poss1ble in our proposal. Here are some cf these
concepts:

!) All data structures are packed in buckets <machine words) of 128
b1ts. In the hardware, a bucket can be divided in bags of 64, 32, 16,
or 8 bits.

2> In the buckets, arbitrary bit fields can be selected.

3) The bit field is the basic type for nonnumerical data. Normally,
such data structures are packed in bags <B-64 bits). In some cases,
the bags of a bucket may be pracessed in parallel (scann1ng of cha
racter strings, graphics operations etc.).

4) For n1~merical data? there is only one basic type: the b1nary coded
natural number. Arbitrary bit fields can be treated as natural num
bers. They will be processed in multiples of 32 b1ts <with appro
priate extens1on before processing, if necessary>. All other numeri
cal data types are extens1ons of this concept:
Inteqers are naturals extended by a sign bit (sign/magnitude repre
sentation in contrast to the usual two's ccmplement representation).
Floating point numbers are composed of an integer mantissa and an
integer exponent (fixed formats of 32, 64, and 96 bits).
BCD coded decimal numbers are not prov1ded. Decimal numbers can be
represented as rational numbers (fractions) of the form a/b.
The merits of th1s proposal have yet to be proved. But there are some
obv1ous advantages~

aJ For each type of operation,
necessary.

only one type of hardware resource is

b) Floating point operations could be conlrolled up to the elementa
ry level (microcode level; DA89). High accuracy alqorithms <e. g.
an accurate scalar product; KU81) could be implemented efficient
ly. I+ desired, extremely lang integers could be used instead of
floatinc point numbers for intermediate variables within high
accuracy calculat1nns.

c) BCD hardware can be avoided. Binary rational number arithmetic can
use the tree structure efficiently (see Figure 7). This promises
to be cons1derably faster than the usual nibble-by-nibble BCD
arithmetic.

Of course, the machine should be compatible to wide-spread basic data
structures C2's complement integers, bytes etc.). But conversion (e.
g. 2's complement to sign/magnitude representation and vice versa>
cou ld be done on the f ly and requires considerabely less hardware
than independent resources for each data type.

To each cf the basic operations, one dedicated har·dware resource is
ass1qned. Some resources could be operated in parallel, but this kind
of parallelism has been Festr1cted to keep cost down <e. g. in the
numer1cal section, only mult1ply-add dataflow has been provided).
Exponent calulations are performed in dedicated hardware. Special

c1rcuitry has been provided for data conversion <unpacking of stored
data into the internal representation and vice versa). This circuitry
(in Figure 12: Argument selection/alignment) consists mainly of bar
re! shifters which can be exploited for multiple functions Cbitfield
extraction/insertion, floating point mantissa shifting etc.).

Since none of the resources and operations is completely new, estima
tions of expenditures can be based on known high-performance proces
sors. For example, the i860 [INT90J comes very close to our proposal,
including 8 kBytes on-chip memory, 64-and 128-bit data paths, multi
ply-add chaining in the FP unit, graphics operations, and integer
multiplications done within the FP multiply hardware. The i860 re
quires slightly more than one million transistors. Thus we can esti
mate to implement an operation unit with a silicon budget between one
and five million transistors, depending on particular cost/perform
ance tradeoffs.

6. The Processor Structure

The overall processor structure, which contains the described ensem
ble of four operation units as a subsystem, is shown in Figure 13.
The basic steps of the instruction processing are assigned to dedi
cated hardware resources:

instruction issuing <control memory, Common Control),
operand selection <Selector/Iterator Resources Ensemble, referen
ces/data memory),
execution cf operations <Processing Resources Ensemble, i. e. the
structure cf operation units described above).

For efficient Operand selection, adequate hardware is provided to
keep the operation units busy nearly the whole time. This hardware is
responsible for machine word (bucket> addressing and for elementary
address calculations .
Bitfield selection is done within the operation units. More compli
cated address calculations are executed by the operation units, too.
The Selector/Iterator Resources Ensemble is provided to produce ad
dresses according to access patterns [JE88J which are typical of many
kinds cf innermost loops. Hardware implementation cf such access
patterns allows for simple and efficient circuitry. An example is
shown in Figure 14. This hardware structure is able to produce ad
dress values to access array structures from one to three dimensions.
To formulate such an access pattern in a common programming language
requires nested DD-loops, e. g.:

for AD3 ~ 1 to EC3 do
for AD2 = 1 to EC2 do

for AD1= 1 to ECl do

..... calculations using variables Vi <AD1,AD2,AD3) •.•.

end;
end;

end;

The usual way
Vi <AD1,AD2,AD3)

to calculate the address
is to apply the formula

of an array element

ADDRESSCVil = ARRAY_BASE + AD1 + CAD2-1l*EC1 + <AD3-1l*EC1*EC2.

<EC1,2,3 represent the element count of first, second, and third
dimension, respectively.) The iterator hardware avoids address calcu
lations in the loop body. lt is effective in parallel to the opera
tion units. Multiply operations are only required for the set-up cf
the hardware (offset calculations) prior to loop execution.

The memory subsystem in Figure 13 is conceptually located outside of
the processor. lt must provide the necessary access paths as well as
appropriate storage capacity (many Megabytes) and access bandwidth.
In addition to this, it must provide the propagation of dataflow
control information <see below). The control memory and the referen
ces/data memory are located inside of the processor. They may be used
as instruction and data caches according to the well-known principles
(e. g. set-associative access), but in our proposal the use of these
memories should be cantrollable by software directly. The control
memary contains the last recently used pragrams. lt will be laadad
via the four read-anly ports. The preferred use af the references/da
ta memory is ta hold reference informatian of the last recently used
pragrams (access descriptors), constants, and intermediate variables.
Four references can be processed in parallel. This memary can exchan
ge data with the memory subsystem and with the operation units. To
avoid confusion, some details should be mentianed:

1. The Processing Resaurces Ensemble in Figure 13 carrespands ta
Figures 11,12, and the pracessar is designed with cost-effectivity in
mind, thus multiple use af the data paths is necessary.

2. The references/data memary contains bidirectional bypasses for the
read/write memary parts <5-8). The Processing Resaurces Ensemble has
no access to this memory except for address calculations.

3. The memory subsystem cantains dataflaw-cantralled bypasses fram
the ports 5-8 to the ports 1-4, thus data out of the reference/data
memory can reach the operation units 1,2 via the correspanding ports.

4. If the Processing Resources Ensemble according to Figure 9 is to
be chosen (low-cost alternative), then all internal memories are
connected to the four read-only ports, and the write part from opera
tion unit 4 is fed back ta the references/data memory which in turn
has write ports to the memory subsystem and may be used like a
conventional data cache.

To give a rough estimatian, the processor may be implemented within a
silicon budget of 50 million transistors:

a) Memories:
buckets

2 Memories, each has 4 banks of 4 k buckets <total 16 k
256 kBytes = 2 Mbit). 2 Mbit*2 = 4 Mbit; 6 transi-

stors/bit: 24 million transistors (+ address decoders etc.>,
bl Cammon Control, Selectar/Iterator Resaurces Ensemble, bypasses,

glue and driver circuitry: 1-2 million transistars,
c) 4 Operation units: 4 ... 20 (4*1 ... 4*5) million transistars.

Further cost/performance tradeoffs may reduce the transistor budget
to the 10 millions range <dynamic memory cells, less memory, off-chip
memory, operation units with less or performance-reduced resources).

8. Control Principles

A combination of VLIW, microprogramming, and dataflow control princi
ples is employed. The instruction formats are based on 128-bit
buckets. Basically, the following types of control information are
provided:

1. Resource Control Words <RCWs>. RCWs are similar to horizontal
microinstructions. An active RCW controls the information flow of the
corresponding unit in the current machine cycle. RCWs can be executed
out of the control memory or (in the operation units) out of the MPM.

2. Incarnation Control Words <ICWs>. ICWs are used to control resour
ces according to dataflow principles. Examples of such information
structures are shown in Figure 15. An ICW is composed at least of a
Resources Selection Bucket <RSB> and an Argument Selector Bucket
<ASB>. Thus resources control and argument selection are isolated
from each other. A RSB contains 8 code fields. A code field can
select a particular resource in a particular unit and a argument
selector field out of the ASB. There is no operation code. Instead,
the resources are identified by ordinal numbers, and the selected
arguments will be delivered to the selected resource. E. g. to multi
ply two numbers in a particular operation unit requires feeding the
arguments to the multiplicand and multiplicator registers in the
desired unit. The appropriate control information accompanies the
data. This control information is packed into 32-bit Resource Selec
tion Words <RSWs> by the processor's Common Control circuitry. The
RSWs must be propagated via the memory subsystem to appear together
with the data buckets at the operation units. Proper synchronization
is achieved by an order number in each RSW, which is generated by
Common Control. A particular resource will be active only if all
corresponding arguments have the same order number. The result will
be forwarded with the same or with an advanced order number, accor
ding to the Advance Control bit in the RSW. Obviously, it poses no
principial difficulties to introduce superpipelining by inserting
appropriate pipeline stages into the processing resources.

9. Conclusion

An overview of a proposal for a high-performance uniprocessor archi
tecture has been given. Of course, many details and intricacies had
to be skipped, and a lot of research work remains to be done. Obvi
ously, the following problems deserve special interest:

refinements of the dataflow control principles,
respect to branch and start-up latencies,

especially with

- evaluation of each innovation against well-introduced
migration paths from or even compatibility to systems
de-facto standards,
compiler-related issues.

principles,
representing

10 . Refer enc:es

CD89

COL.8 7

DA89

DI8'l

IN88
INT90

,JE88

,JD88

,J[189

KLJ74

r<UL.B l

8089

THD64

VLA8B

WU87

h'.. Cohn et al., "Ar,..c:hi. t.E~c::t.ur'„f!~ ancl Compi J. er· TrC:l.cieoffs fc;r a
Lc1nq I nstr·ucti on Wor·cl Mi c1'·opre>cesso1r Y

11 f.:) I GAF~CH Computer'· (-~r--

c:h i tec:ture News Vol. 17, No. :;;;:? pp.2··-14, April 1989.
i::;:„P. Cnlw<':?11 E"~t al. Y

1'A VL...IL..J Arcite?c:t.urc:::.1 for a Trac:e Sc:he~du··-·

lirnJ Computer·," ClpE!rating Syst!::)ms Reviei,.J Val. 21, l\lo. 4, pp.
180-192, Clctober 1987.
W.J„ DaJ.J.y, 11 Mi.cro-OptimizC:1.tion of Floating-„Point Opera-·
t :i cms," ~3 I f31!.:\F~CH Computer· {~r-c:h i tf?ct.u1'·e News Vol. :l 7, No. 2,
PP· 283-289, April 1989.
D„ i::;:. Ditzel, "Dc-:?~";iqn T1'·;:\c:leof·fs to Supprnrt t l·Hi! C Pro<Jramming
LanguagE' in the CF: I SF' Mi cn:>processor··," Operating !:.•ystems
Review Vol. 21, No. 4, pp. 158-163, October 1987.
INMOS Ltd. Transputer Referenc:e Manual. 1988.
Intel Corporation. i860 64-bit Microprocessor Programmers
Reference Manual. 1990.
Y. :Je<JOUy "Access F'c:ü.ten1s: A l.Jr:;<eful Ccincept in Vector Pr-o ·····
c;wammi. nc;.1, " SupE~r„comput i nc;.r. J. st International Cc>nf erence
Athens, Greec:e, June 1988 Proceedings, pp. 377-391 (Springer
1988? LNCS VoJ.. 297).
N. r:.· „ J oupp i. ,1

11 Supf.:)1'·1sc,:1l a1'· v~::;. Super'·p i pel :i ned M.::tch i ne1s ·i
1

'

SißARCH Computer Architec:ture News Vol. 16, No. 5, pp. 71-
BO, November 1988.
N.F·. Jouppi, D.W. Wall, "Avai.lat:>le Instructi.on-L.evel Paralle-·
lifün +or St.q:H?.rscala1r anci b upf?r·pipelined l"l.::1ch:i.nf-.?s, 11 Siß(...)F~CH

Computer Architecture News Vol. 17, No. 2, pp. 272-282, April
1989„
D.J„ Kuck et al„, "MeasuremE.>nt.s of F'a1raJ.leJ.i.sm in Orclinary
FO!::;:TF~Al\I Prog1"«'.:tms," Computf?r Vcil „ :1., No„ 1, pp. :~:.7--46, ,January
1974.
U.W. Kulisch, W.L„ Miranker. Computer Arithmetic in Theory
and Practic::e. Academic: Press, 1981„
M.,J. l"lahcm et al., 11 Hewl1:.»tt--F'ack.:ffd F'reci.sion Arc:hit.ecture:
Tht? Proce~:; ~:;or· , 11 H01wlet.t-·Packa1rd c"louirnr.i.1, (..~ugust 1986, pp. 4--
„, .-~

.a::.z::.11

1'1.D. Smi.th et .::11., "L.i. m:i.ts; ein Multiple Inst.ruction Issue,"
SIGARCH Computer Architec:ture News Vol„ 17, No. 2, pp. 290-
502, Apr··i J. J.989.
E-3.S. Sohi, S. V.:dapeyam, "Trade•offs i.n Instruction Format
Design fo1r Hor··i zcmtci.l ?)rrchi tect.u1rEi!S 'J" SIGAfo:;:CH Computer A1'·ch:i. ···
t.ecture News Vol.17, No„ 2, pp. 15-25, April 1989 •
.J. E.~ „ Tho1rnton? 1

' F'a1ral 1 el Oper·at :i on j. n th0~ Contr·ol Data 6600, ''
AFIF'S Proc. FJCC, Part 2, Vol. 26, pp. 33-40, 1964.
H „ Vlakos.i V. M:ilut.inovic, "GaAs Mic:ropr·oci:=sso1rs and Digital
f.)ys:.tems; . An Overview of m~(D Effnrts, II IEEE Micr·o Vcil. 8, No.
1, pp. 28-56, February 1988.
Wm. A. Wul+, "The WM Computer- Arc:hite:)ct.ure1," SIGAF~CH Computer
Architecture News Vol. 15, No. 4, pp. 70-84, September- 1987.

a
\

b

c

a

b
c

d----'

Figure 3: Frequency

cf the number of ope
rands in arithmetic

assign ments (VLA88).

Mul tiport
Register
File

0

Figure 1: Structure cf twc

operation u nits (WU87).

d := (a QeJ. b) QP2 c
d

Figure 2: Structure of three
operation units (VLA88).

e == (a QE.1 b) QP3 (c Qef d)

e

Frequency

--Ordinary pro~ams

· - · -·-.. computation-int'ensive - ·· · - . programs
.......

~------=- · -

2 3 5 6 7
operands

Nonblocking Crossbar Networks

Figure 4: Crossbar connection structure 1n a
super scalar (VLIW) machine.

Addition

Subtraction

[x1 , x2J - [x3 , x4J = ~1 - x4 / x2 - x~

/vf u/ t ig_I ica t ion

~1 , x~ jf ~3 , x~ = &in(P), max(PO

with p = (x1,i,X3 , X1,i,.X4 , X2 ;lt< X3 1 X2 ?f. X)

X3

~_,mtn

max

Figur e 5 ; Ex am p l es o f e l e m e n t a r y i n t er v a l a r i t h m et i c o per a ti o n s.

Addition/subtract ion

/v!u lt 1j)_I ica t ion

(a1,b1) ~ (a2 ,~) = (a1 a2- b1 b2
, a

1
bta

2
b
1
l

a,

az b1 --~-_,-'--

b2

Division

[

a, a2 + b1 bz
2 b2 I 02 + 2

a,

02 ---...--+----.~_,,,.

b1

b2

Figure 6: Examples of elementary complex number

arithmetic Operations.

Additionlsubtr ac tion

a b
-+ - -
P, - P2 -

/v1u/t12_/ ica tion

:=xv--n
:Y-d

n

d

n: resultnumerator

d: result denomi naror

Resu/t rounding_ (according to a specified precision p)

Figure 7: Examples of elementary rational number

arithmetic operations.

x x x2 x 3
e=1+-+-+-+ 1! 2! 3! ...

1)

0): initial value 0

1): initial value 1

X--------

Calculation of n! ; OJ

could be replaced

by fetching table

values.

1 n!

1)

accumula ting memory (register)
1) !contai ns fin al r esul t ex)

END si nalization

Figure 8: Series expansion example.

from memory Subsystem

~
~~l~~r~:~ - - - - - - - - - - -~
min/max to memor y

---~

detection hardw. subsyst em

acc umu lating
memory (regist er)

Fig_ure 9: The proposed structure of four Operation units
{at first glance).

di
rectly

by
pas
sed

Read ports
Por t 1 Port 2 Port 3 Par t 4

con trol control
/

r / r-f •
A c 8 A c ß

Proccissing Processing
Kernel R Kernel R

+ bypass

1 ~ 2
• bypass

~
1 - 1

eo n t rol ,
/

J r-
A c B

Process ing

i Kernel R
D[

t bypass
] ~v Accumutatin g

Memory
00

l
control

Information Port /
t r-tlow 1 2 3 4

Data to i1 A 28
A c a

18 2A Processing
Control to / 1C 2C Kerne(R

Data to 3A 38,4A accumulate t
Con tra(to 3(4(

tol
4 \g~ memory

Wr it e port

Figure 10: The proposed structure: detailed v1e1N.

Interna! details ot an operation unit
A B

r - -- ----- ----- ---- ----

A c 8 MA MB 00 1 00><
1

Processing :L Multipurpose MPM
0..

Kernel :I: Memory

R
QJ

DI '-
0 .._
Vl

load MPM

SEL
1
L _ _ _ _ ___ _ _j

R

7 Read/write · ports {5„8) 8

s
Read-on\y ports {1 .. 4)

6

1 2 3 4

A B A B

1
R 2 R

•
store 11 load 3 A store 2

1
load 38

A B

3 R store 41
load 4 B

'

store 3
1

load 4 A

A B

4 R

Figure 11: The proposed structure extended.

a)
b)

()

~

A B
to MPM/bvoass !Oll

microcode out of MPM

one of the buses can (01x1by!XISS)

1
Resource

be selected to detect A Fifa B Fifa Conf-rol
conditions n Dataflow control information

Words (R C Ws)

outpu t of condi tio n from HPM (00)
results

f - a) l (OO,tl
\Arguments preselectian / ~

Cantrol
AC- Bus

~ -
SARG - selected arguments

Arguments se lection/al ignm ent R - result

+ t · · · ·control lines .. + RX - result extension Uncludes FP exponent hardware.)

AC - arithmetic chaining
SARG 4- Bus

SARG3- Bus
Vl

SARG2 - Bus c
0 ·-

SARG1 - Bus
+-·-
'O

l l c
0

' ~ LJ

Logic Graphics Conditions
\Add/sub/ \Multiply / \Divide / •Gate thru • Or • c l ip •First/last occurrence

• lnvert • Xor •Dr a w •No. ot occurrences
·And etc. ·z-tiutfer operations • 1 n t erval compare

• Ma" /min c etect.

b) c) l
R- Bus (01)

R X- 8110::. ' (Dlxl _

to MPM / R-output

Figure 12; Internat structure af a processing kernel.

Vl
..c
+-g
0
L

c
0
u

Vl

~· c.....

Cl

Qj

a. -
::::i

E

.-
_:
Qj
Vl
c..:

+-
Vl
c ·-

......
X
Qj

c

Memory su bsystem

4 read-on ly
access paths

1 2 3 4

Control memory*

(lnstruction cache)

1
Common
Control

' s t t
Se l ector /lterat or

4 reference
Resources paths _

Ens~mble

Figu re 13: Processor struct ure.

t from/to p e ri pherals

t.. readiw'rite
access paths

5 6 7 8

References/data
,......, memory *

(Data cache)

5 6 7 8

1 2 3 4

rs t6 f1la
Proc essing
Resources
Ensemble
(4operation units)

·See tig.111 12 for details.

~: Eac h of t he

memories com

prises at least
4 banks of

4 k buckets

(128 bit).

SteRS c ou n ti n g_ Ad dr ess calculation

Parameter bus

(L 1 l (W1)

RG Limit RG Offset RG Current adrs

Address
+1 to

Stag_gj_ Vl
memory °' QJ

L

;)(. rn
to con trol logic QJ

.c:
+-

SEL
.....
0

(L2) (W2)

RG L. . t
0

RG Otf set RG Current adrs 1m1 0
+-
c

u
+1 QJ

u
a

Stage 2 0

QJ

* .0

0
+-

Vl

(L3) (W3) Vl
QJ
L

RG Limit RG RG u

Offset Current adrs u
0

-a
+-

+1 ·-c

Stage 3

*
„ Figure 14: lterator hordware tor three nested 00-loops. (Stage 1 correspon ds to

innermost loop.)

32 bit Resource Selection Word (RSW)

Format Or der No. Resour.::2 ord i i10l

L--=: Argument control

Advance contro l

Bittield se lf?c t or or MP M/ bronching contro l

Bitfield selector

Structure ot datatlow information

(tran sferred via read on\y ports)

!Format! Bit count 'Firs t b i t 1n bucket

15 13 7 6 0

Accompanying control information (up to 64 bit} Argument dato bucket (128 bit}
~, ---'----'-~R-SW-1~~------..~~~~RS_W_2~~-----..-ll~~~---.\~~~~~~~~~~

Resources Selection Bucket (RSB) ~gument Selector Bucket (ASB)

'---------->..-" --"---~------"? ~'------'\
1 / ~ ~.___ _ _._I __

7

of 8 code t i elds ot 8 argument selector f i elds

15 13 10 9 B 7

RSB code field for Q ROrticular resource: IFormo t !Argument se~ ,,....... II Resou r ce or d i nal

Order No. contro l (clear/k eep / odvonce}

7 6 5

· Fig_ure 15: Example dataflow control ward tormats.
[Unit 1 Resource

0

: tor pro-
1cess ing
t r esour.:es

