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Abstract

A uniprocessor superscalar architecture is proposed which comprises
four universal operation units arranged according to a tree-shaped
dataflow graph, instruction issuing hardware, and operand selection
means. The control principles are based on VLIW, microprogramming,
and dataflow concepts. The proposal emerged mainly from investiga-
tions of inherent mathematical structures of application problems,
especially from the analysis of dataflow graphs of elementary mathe-
matical formulas (arithmetic of intervals, complex and rational num-
bers etc.). The particular operation unit itself is an ensemble of
high-performance processing resources which may be compared to state-
of-the-art processors (e. g. i860). It may require a silicon budget
from one to five million transistors. The whole processor may require
10 to 50 million transistors, thus being a suitable implementation
target for IC technologies of the 90°s.

i. Introduction

To make use of the inherent parallelism in ordinary programs requires
the availability of more than one processing resource to perform the
desired operations. An obvious approach is to provide multiple opera-
tion units. This is known as the superscalar approach. Besides,
multiple resources could be created by dividing an operation resource
vertically into pipelined segments so that multiple operations can
flow through in a step-by-step fashion (superpipelining approach).
Both principles can be combined (superscalar/superpipelined machines;
JO&8) .

In this paper a particular superscalar architecture will be proposed
(with obvious possibilities to add superpipelining, too).

The main objective of the underlying research activities was to
develop a performance—-optimized uniprocessor architecture which
should be

1) a versatile, powerful, and cost-effective ensemble of processing
resources,

2) an advantageous implementation target for IC technologies of the
70°'s,

3) a suitable processing element for high-performance and massively
parallel systems, according to the good old principle of engi-
neering sciences, to optimize the components first before imple-
menting them in cost-intensive technologies or assembling them to-—
gether in large quantities.



2. Enown Structures - an Overview

Superscal ar machines can be built as ensembles of different operation
units (integer add, integer multiply, floating point add, multiply
etc.y the CDC 6600 [THO641 is a well-known example).

Evidently, an ensemble of universal operation units, each of which is
capable of performing all the operations specified in the architec-—
ture, will provide more opportunity to exploit the available inherent
parallelism. Hence we will concentrate on such structures.

In a rough taxonomy, known structures could be divided into two
categories:

1) tree-like dataflow connection structures,
2) crossbhbar—~like connection structures.

The Figures 1,2 show two structures of the first category. The first
structure  LWUEBED was derived from the observation, that many opera-—
tion sequences have the form

(a OF1 b) OFPZ o,

with the SAXFY (linked triad) d@id)= (a % b(i)) + c(i) being a well-
kEnown example.

The second structure (proposed for a Gafs microprocessori;  VLASE) had
been based on the following empirical realization: Application pro-
grams can be divided into those with a low amount of calculations and
those with an extraordinarily high amount. Frograms belonging to the
first category have in approximately 93%4 of all assignments no arith-
metic operands or only one arithmetic operand. Calculation—-intensive
programs  have in approximately 934 of all assignments up to 2 ope-
rands (see Figuwre 3.

Figure 4 shows the principial structure of a superscalar machine with
crosshar—-like connections. The obvious advantage is the wunlimited
universality which is not restricted by a particular scheme of data
flow. On the contrary, crossbar networks are cost—intensive and may
lead to a slower machine cycle. This scheme is typical of VLIW archi-
tectures L[COLE7, CO8L1, sometimes with the modification of separate
register files, crossbars, and operation units for both integer/logi-
cal and floating point operations.

An important hardware viewpoint deserves consideration: the informa-—
tion paths in dataflow schemes are point-to-point connections which

can be kept short. Tree-shaped structures have the additional advan-—
tage that the connections do not cross each other. Hence they are
better suited for integration than totally uwniversal connection

schemes (crossbhar or bus structures) .

F. Foundations for Developing a New Architecture

The present superscalar architectures had been developed on the basis
of comprehensive analytical work. The experiences had been gathered
essentially by measuwrements of the frequency of usage of operations
and operation sequences in comprehensive samples of application pro-
OF AaMS .



Such a measurement-oriented approasch [MASL] may lead to considerably
good machines, but it has two obviouws drawbacks:

1Y The rate of usable inherent parallelism is disappointingly low. In
the literature, the recommended rate depends on the semantic level at
which the investigations had been done. A lower level means less
usable paral lelism., I only the instruction level is considered, it
has shown strong evidence, that it makes no sense to provide more
than two operation units in parallel L[JOE%, 8ME21. On the contrary,
investigations at Fortran source code level had promised rates of
usable parallelism from 16 to more than 128 CRU741.

2 Machine architectures derived from these data reflect current
praogramming habits. Fossible opportunities for further innovation may
remain undiscovered.

Hence ow approach is not to study programs, but to study the under-
lying mathematical structures or, in more general terms, the deep
structuwres, the essence of important application problems (i. .
semantic levels above the programming languages) .

Examples:

In many numerical applications it is possible to execute both integer
and floating point operations in parallel. This fact had been applied
to some architectuwres (. 9. Trace, Transputer T 800, i8&60). But what
igs the essential cause behind this empirical observation? For what
reason  can  integer units be kept busy in loops processing floating
point data? - Evidently, the integer operations are necessary to do
the address caloculations for array element addressing. From this
realization we can draw a significant advantage: We can sub-optimize
the integer units. For example, we may restrict the number of univer-
sal integer units to one or two, and additionally we may provide some
units specialized to address calcuwlations (as many as needed to feed
the Ffloating point units). Thus we may exploit more of the inherent
parallelism and keep cost comparatively lower.

T obtain initial empirical data for a new proposal we have simply
browsed some collections of formulas.’ Figures 5-8 show some fre-
quently needed mathematical operations together with the correspon-—
ding dataflow graphs. We realize only two essential interconnection
structurass:

1) none, i. e. independently operating units,
2 tree-shaped strucbures.,

A more elaborate bookkeeping of the resources needed (skipped here
for sake of brevity) will show that four operation units may be used
efficiently (i. . they may be kept busy in nearly the whole time).
Calculations whose dataflow graph comprises more than four nodes are
to be executed in more than one processing step. Hence some bypass
and local storage means have to be provided.
1 0f couwse, this simple method cannot substitute comprehensive
investigations., But it is sufficient to demonstrate the feasibility
of our approach.



4. The Froposed Structure

fAoccording to Figuwres 2,10 the proposed structure comprises four
univarsal  operation units and (not explicitely shown) a minimum/ma-
dimum and a delta detector. The operation units form a tree structure
with four operand data paths from omenory and one result path to
MEMOEY . The structure is an extension of the structure according to
Figure 2 by an additional unit whose 2Znd operand input is attached to
a stack-like accumulating memory or accumulator register, respective-
Ty A stack-organized acoumalating memory of sufficient capacity may
be used as the runtime data stack (at least as a stack cache: DI&7).
Haenoce  the problem how ordinary programs can exploit the tree struc-
ture efticiently may be reduced to the problem of tree height reduc—
tion.

The memory subsystem, the instruction issuing and control mechanisms,
and address caloculation means are implemented in additional hardware
which will be explained below.

The structure according to Figures 92,10 is based on  the assumption
that a tree-like dataflow scheme will be more significant in a true
universal  processor than independent operation of the fouwr units.
Hence only  the tree connections are provided in hardware to hkeep
interconnection cost as low as possible. This approach requires some
bypass provisions to feed the operation units 2,4 with control infor-
mation, and, it operated independently, with memory data.

Omn the other hand, this cost/performance tradeoff will cause effecti-
vity losses, if vectorized or unrolled code is to be executed. As a
matter of routine, to allow for independent operation of four units
would reguire at least 12 memory ports (4¥2=8 to fetch the operands,
4 to store the results), and additional interconnection means would
be necessary  bto implemsnt the trese-shaped structure. The wrge for
cost reduction led to the extension of the proposed structure shown
in Figure 11. Each of the operation units has a multipurposs  memory
(MFM) which can be used as an acocumulator, a stack, a collection of
vector registers, and a control storage. It has two independent ports
for read and write acoesses, respectively. ITts capacity should be at
lewast & kBytes, organized as 1024 buckets of 128 bits (Lf used as a
vectoar register, 1t could hold two vectors of 1024 &4-bit elements).
The whole structure is connected to the memory subsystem via eight
ports (fouwr read-only and four read/write ports, the latter are used
o provide the paths of the tree-shaped structure as well). Thi s
scheme  allows to load and store the MPMs at maximum speed. Each of
the operation units can execute even triadic operations (@. g. S5AXFY)
with two of the operands delivered via memory ports and one from the
MFM. The results will be stored in the MPMs. They can be moved to the
memory &t maximum speed after the operations have been completed.

5. The Internal Structure of an Operation Unit

Each of the fouwr operation wunits can process numerical and nonnumeri-—
cal data, respectively,

The internal structure of a processing kernel is shown in Figure 12.
In principle, some state-of-the-art high-performance processors  may
sarve as & paradigm for processing kernel design (@. ' THMS E4082,
Motorola DBEF60O0O0Z, 18460, AMD 29000), and Figure 132 shows nothing but
an ensemble of processing resouwrces a high-performance machine should



have, according to today s knowledge. Compatibility to existing ar-
chitectures was not our concern. Instead, we tried to put as many
innavative ideas as possible in our proposal. Here are some of these
concepts:

1y All data structures are packed in buckets (machine words) of 128
bits. In the hardware, a bucket can be divided in bags of 64, 32, 1é&,
or & bhits.

2) I the buckets, arbitrary bit fields can be selected.

T The bit field is the basic type for nonnumerical data. Normally,
such  data structures are packed in bags (8~&4 bits). In some cases,
the bags of a bucket may be processed in parallel (scanning of cha-
racter strinogs, graphics operations etc.).

4) For numerical data, there i only one basic type: the binary coded
natural number. Arbitrary bit fields can be treated as natural num-—
bhers. They will be processed in mulbtiples of 32 bits (with appro-
priate extension before processing, 1f necessary). ALl other numeri-
cal data types are extensions of this concept:

Integers are natwals extended by a sign bit (sign/magnitude repre-
santation in contrast to the usual two's complement representation).
Floating point numbers are composed of an integer mantissa and  an
integer exponent (fixed formats of 3%, 64, and 96 bits).

BCD  coded decimal numbers are not provided. Decimal numbers can be
represented as rational numbers (fractions) of the form a/b.

The merits of this proposal have yet to be proved. But there are some
obvious advantages:

@) For each type of operation, only one type of hardware resource 1s
FUEBC (R EER AT Y o

) Floating point operations could be controlled up to the elementa-—
ry level (microcode level: DASY). High accuracy algorithms (@. g.
an accuwrate scalar producty;  FUE1L) could be implemented efficient-
VR I+ desired, sctramaely long integers couwld be used instead of
floating point numbers for intermediate variables within high-
accuracy caloulations.

o) BCD hardware can be avoided. Binary rational number arithmetic can
uwse the tree structure efficiently (see Figure 7). This promises
to bhe considerably faster than the usual nibble-by-nibble RBCD
arithmetic.

OfF couwrse, the machins should be compatible to wide-spread basic data
structures (2's complement integers, bytes etc.). But conversion (e.
g. @' complement to sign/magnitude representation and vice versa)
could  be done on the $ly and reguires considerabely less hardware

than independent resouwrces for each data type.

To esach of the basic operations, one dedicated hardware resouwrce is
assigned. Some resouwrces could be operated in parallel, but this kind
of parallelism has been restricted to keep cost down (. g in  the
numerical section, only multiply-add dataflow has been provided).
Exponent calulations are performed in dedicated hardware. Special



circuitry has been provided for data conversion (unpacking of stored
data into the internal representation and vice versa). This circuitry
(in Figure 1Z: Argument selection/alignment) consists mainly of bar-
rel  shifters which can be exploited for multiple functions (bitfield
extraction/insertion, floating point mantissa shifting etc.).

Since none of the resouwrces and operations is completely new, estima-
tions of expenditures can be based on known high-performance proces-
sors. For example, the i860 LINT?01 comes very close to our proposal,
including & kBytes on—chip memory, éd4-and 128~bit data paths, multi-
ply—add chaining in the FF unit, graphics operations, and integer
multiplications done within the FF multiply hardware. The i860 re-—
quires slightly more than one million transistors. Thus we can esti-
mate to implement an operation unit with a silicon budget between one
and five million transistors, depending on particular cost/perform-
ance tradeoffs.

6. The Processor Structure

The overall processor structure, which contains the described ensem-—
ble of four operation units as a subsystem, is shown in Figure 13,
The basic steps of the instruction processing are assigned to dedi-
cated hardware resources:

-~ instruction issuing {(control memory, Common Control),

- operand selection (Belector/lterator Resouwrces Ensemble, referen-—
ces/data memory) ,

- execution of operations (Frocessing Resources Ensemble, 1. e. the
structure of operation units described above).

For efficient operand selection, adequate hardware is provided to
keep the operation units busy nearly the whole time. This hardware is
responsible  for machine word (bucket) addressing and for elementary
address calculations .

Bitfield selection is done within the operation units. More compli-
cated address calculations are executed by the operation units, too.
The Selector/lterator Resouwrces Ensemble is provided to produce  ad-
dresses according to access patterns [JESEL] which are typical of many
kinds of innermost loops. Hardware implementation of such access
patterns allows for simple and efficient circuitry. An example is
shown in Figuwre 14. This hardware structure is able to produce ad-
dress values to access array structuwres from one to three dimensions.
Tao Fformulate such an access pattern in & common programming language
requires nested DO-loops, &. .

for ADI = 1 to ECE do
for ADZ = 1 to EC2 do
for ADI= 1 to EC1 do

ceaascaloculations using variables Vi (ADL,ADZ,AD3) . ...
ends;

endsj
end3j



The wsual way to calculate the address of an  array alamant
Vi (ADL,ADZ,ADE) is to apply the formula

ADDRESS (Vi) = ARRAY_BASE + ADL + (ADZE-1)+#ECL + (AD3I~1)*EC1*ECZ.

(EC1,2,3 represent the element count of first, second, and third
dimension, respectively.) The iterator hardware avoids address cal o
lations in the loop body. It is effective in parallel to the opera-—
tion wnits. Multiply operations are only required for the set-up of
the hardware (offset calculations) prior to loop execution.

The memory subsystem in Figure 13 is conceptually located outside of
the processor. It must provide the necessary access paths as well as
appropriate storage capacity (many Megabytes) and access bandwidth.
In addition to this, it must provide the propagation of dataflow
control information (see below). The control memory and the referen-—
ces/data memory are located inside of the processor. They may be used
as instruction and data caches according to the well-known principles
(e. g. set-associative access), but in our proposal the use of these
memories should be controllable by software directly. The control
maemory contains the last recently used programs. It will be loadad
via the four read-only ports. The preferred use of the references/da-
ta memory is to hold reference information of the last recently used
programs (access descriptors), constants, and intermediate variables.
Four references can be processed in parallel. This memory can exchan-
ge data with the memory subsystem and with the operation uwnits. To
avoid confusion, some details shouwld be mentioned:

1. The Frocessing Resowces Ensemble in Figuwe 13 corresponds  to
Figures 11,12, and the processor is designed with cost-effectivity in
mind, thus multiple use of the data paths is necessary.

2 The references/data memory contains bidirectional bypasses for the
read/write memory ports (5-8). The FProcessing Resources Ensemble has
no access to this memory except for address calculations.

B The memory subsystem contains dataflow-controlled bypasses from
the ports 98 to the ports 1-4, thus data out of the reference/data
memory can reach the operation units 1,2 via the corresponding ports.

4, If the Frocessing Resources Ensemble according to Figure 9 is  to
he ochosen (low-cost alternative), then all internal memories are
connected to the four read-only ports, and the write port from opera-
tion wunit 4 is fed back to the references/data memory which in  turn
has write ports to the memory subsystem and may be used like a
conventional data cache.

To give a rough estimation, the processor may be implemented within a
ailicon budget of S50 million transistors:

&) Memories: 2 Memories, each has 4 banks of 4 k buckets (total 16 k
buckets = 286 kBytes = 2 Mbit). 2 Mbit*2 = 4 Mbity 6é& transi-
store/bit: 24 million transistors (+ address decoders eto.),

By Common Control, Selector/lterator Resowces Ensemble, bypasses,

glue and driver circuitry: 1-2 million transistors,
) 4 Operation units: awn2d (4], .. 4%5) million transistors.



Further cost/performance tradeoffs may reduce the transistor budget
to the 10 millions range (dynamic memory cells, less memory, off-chip
memory, operation units with less or performance-reduced resources).

&. Control Frinciples

A combination of VLIW, microprogramming, and dataflow control princi-
ples is employed. The instruction formats are based on  128-bit
buckets. Basically, the following types of control information are
provided:

1. Resource Control Words (RCWs). RCWs are similar to horizontal
microinstructions. An active RCOW controls the information flow of the
corresponding unit in the current machine cycle. RCWs can be executed
out of the control memory or (in the operation units) out of the MFM.
2. Incarnation Control Words (ICWs). ICWs are used to control resour-—
ces  according to dataflow principles. Examples of such information
structures are shown in Figure 15. An ICW is composed at least of a
Resouwrces Selection  Bucket ((RSB) and an  Argument Selector Bucket
(ASB) . Thus resources control and argument selection are isolated
from each other. A RSB contains & code fields. A code field can
select & particular resouwrce in a particular unit and a argument
galector field out of the ASH. There is no operation code. Instead,
the resources are identified by ordinal numbers, and the selected
arguments will be delivered to the selected resource. E. g. to multi-
ply  two numbers in a particular operation unit requires feeding the
arguments to the multiplicand and multiplicator registers in the
desired unit. The appropriate control information accompanies the
data. This control information is packed into 32-bit Resouwrce Selec-
tion Words (RSWs) by the processor ‘s Common Control circuitry. The
R&SWs must be propagated via the memory subsystem to appear together

with the data buckets at the operation units. Froper synchronization
is achieved by an order number in each RSW, which is generated by
Common Control. A particular resource will be active only if all
corresponding arguments have the same order number. The result will

be forwarded with the same or with an advanced order number, accor-
ding to the Advance Control bit in the RSW. Obviously, it poses no
principial difficulties to introduce superpipelining by inserting
appropriate pipeline stages into the processing resources.

?. Conclusion

AN overview of a proposal for a high-performance uniprocessor archi-
tecturse has been given. O0f course, many details and intricacies had
to be skipped, and a lot of research work remains to be done. Obvi-
ously, the following problems deserve special interest:

= refinements of the dataflow control principles, especially with
respect to branch and start-—-up latencies,

- evaluation of each innovation against well-introduced principles,

- migration paths from or even compatibility to systems representing
de-facto standards,

= compiler-related issues.
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Figure 5: Examples of elementary interval arithmetic operations.



Addition/subtraction
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Figure 6: Examples of elementary complex number
arithmetic operations.



Addition/subtraction
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Figure 7: Examples of elementary rational number
arithmetic operations.
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Internal details of an operation unit
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*See fig. 11,12 for details.

*: Each of the

memories com-
prises at ‘least
4 banks of

4 k buckets
(128 bit).



Steps counting_ Address calculation
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I { Address
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Stage 1 memory | &
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Figure 14: Iterator hardware for three

nested DO-loops.

inner

(Stage 1 corresponds to

most loop.)



32 bit Resource Selection Word (RSW)

Format | Order No. Resource ordinal
1 | | 1 | l 1 | I} )

Bitfield selector or MPM/branching control

l— Argument control
Advance control

Bitfield selector

. . Format| Bit count First bit in bucket
Structure of dataflow information i 3 - -
(transferred via read only ports)
Accompanying control informafion (up to 64 bit) Argument data bucket (128 bit)
RSW 1 RSW 2 UL
Resources Selection Bucket (RSB) Argument Selector Bucket (ASB)
1 0f 8 code fields 1 of 8 argument selector fields
15 13 0 9 8 71 0
RSB code field for a particular resource; |Format|Argument sel. Resource ordinal
—
Order No. control (clear/keep/advance) for pro-
1cessing
7 6 S fresources
’ Unit Resource
Figure 15: Example dataflow control word formats.






